How To Find The Surface Area Of A Hexagonal Pyramid

    Back to Articles Open The Calculator    

Calculating the surface area of a hexagonal pyramid involves finding the area of the hexagonal base and the area of the six triangular faces. This article will guide you through the steps using a specific formula.


Step-by-Step Guide

Step 1: Show the Surface Area Formula

The surface area (SA) of a hexagonal pyramid can be calculated using the following formula:


\[ SA = \frac{3 \cdot \sqrt{3}}{2} \cdot a^2 + 3 \cdot a \cdot \sqrt{h^2 + \frac{3 \cdot a^2}{4}} \]


Where:

- \( a \) is the side length of the hexagonal base.

- \( h \) is the slant height of the pyramid.

- \( \frac{3 \cdot \sqrt{3}}{2} \cdot a^2 \) is the area of the hexagonal base.

- \( 3 \cdot a \cdot \sqrt{h^2 + \frac{3 \cdot a^2}{4}} \) is the combined area of the six triangular faces.


Step 2: Explain the Formula

- The term \( \frac{3 \cdot \sqrt{3}}{2} \cdot a^2 \) represents the area of the hexagonal base.

- The term \( 3 \cdot a \cdot \sqrt{h^2 + \frac{3 \cdot a^2}{4}} \) represents the combined area of the six triangular faces.


Step 3: Insert Numbers as an Example

Let's consider a hexagonal pyramid where the side length \( a \) of the hexagonal base is 4 units and the slant height \( h \) is 10 units.


Step 4: Calculate the Final Value

First, substitute the given values into the formula:


\[ SA = \frac{3 \cdot \sqrt{3}}{2} \cdot 4^2 + 3 \cdot 4 \cdot \sqrt{10^2 + \frac{3 \cdot 4^2}{4}} \]


Calculate each part separately:


1. Area of the hexagonal base:


\[ \frac{3 \cdot \sqrt{3}}{2} \cdot 4^2 = \frac{3 \cdot \sqrt{3}}{2} \cdot 16 = 24 \cdot \sqrt{3} \approx 24 \cdot 1.732 = 41.57 \, \text{square units} \]


2. Area of the triangular faces:


\[ \frac{3 \cdot 4^2}{4} = \frac{3 \cdot 16}{4} = 12 \]


\[ h^2 + 12 = 10^2 + 12 = 100 + 12 = 112 \]


\[ \sqrt{112} \approx 10.58 \]


\[ 3 \cdot 4 \cdot 10.58 = 3 \cdot 42.32 = 126.96 \, \text{square units} \]


Add both parts to find the total surface area:


\[ SA = 41.57 + 126.96 = 168.53 \, \text{square units} \]


Final Value

The surface area of a hexagonal pyramid with a side length of 4 units and a slant height of 10 units is approximately 168.53 square units.

Report
Reply

Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.